Choline acetyltransferase and acetylcholine in Xenopus oocytes injected with mRNA from the electric lobe of Torpedo.
نویسندگان
چکیده
Xenopus oocytes were injected with poly(A)+ mRNA obtained from the electric lobes of Torpedo marmorata and Torpedo ocellata, which contain the cell bodies of the neurons that innervate the electric organs. The electric lobe mRNA preparation induces the oocytes to synthesize a catalytically active form of the enzyme choline acetyltransferase (EC 2.3.1.6). Enzymatic activity is found almost exclusively in the cytoplasmic fraction of injected, but not control, oocytes. Evidence is presented that distinguishes between the induced choline acetyltransferase activity and an intrinsic carnitine acetyltransferase activity present in the oocytes. This latter enzyme is associated principally with particulate fractions of the oocyte. The level of acetylcholine, which accumulates in mRNA-injected oocytes, is relatively insensitive to pharmacological manipulations that alter the acetylcholine content of other cells. These results show that Xenopus oocytes may be used advantageously to study functional properties of polypeptides associated with presynaptic elements in the nervous system.
منابع مشابه
Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.
A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels i...
متن کاملExpression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes.
The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause t...
متن کاملStress-related effects on neuronal morphology and choline acetyltransferase activity in the hippocampus
The effects of semi-chronic stress on neuronal morphology and choline acetyltransferase were studied by injecting rats with dexamethasone. It was found that in the dexamethasone-treated rats the choline acetyltransferase activity had increased in the area where the fibers from the perforant pathway synapse with the granular cell layer of the dentate gyrus and also where the mossy fibers of the ...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کاملStress-related effects on neuronal morphology and choline acetyltransferase activity in the hippocampus
The effects of semi-chronic stress on neuronal morphology and choline acetyltransferase were studied by injecting rats with dexamethasone. It was found that in the dexamethasone-treated rats the choline acetyltransferase activity had increased in the area where the fibers from the perforant pathway synapse with the granular cell layer of the dentate gyrus and also where the mossy fibers of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1985